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STOCHASTIC GAMES, OLIGOPOLY THEORY

AND COMPETITIVE RESOURC E ALLOCATION’

~ 1 ~‘

by

Martin Shubik and Matthew J. Sobel

ABSTRACT

We define discrete time sequential games which are multiperson l4arkov
decision process.. Th. xtant theory is sketched and compared with
our assessment of research needs in dynamic models of oligopoly and oth.r

competitive resource allocation problems. A special class of economic
survival game. is noted.

1. INTRODUCTION

An oligopolistic market is one with only a few firms who supply the

coemodity being purchased. Oligopoly theory, until recently, evolved

without regard to the institutional details encount.red in specific mar—

kits and without addressing the role played by time. Oligopoly models

were treated statically, or at best, conversationally dynamically. How-

ever, dynamic oligopoly models have been analysed with increasing frequency

‘This work relates to Department of the Navy Contract NOO0l4—77—C—OSl8~~~
issued by the Office of Naval Research under Contract Authority NE 047—006
However, the content does not necessarily reflect th. position or the
policy of the Department of the Navy or the Government and no official
endorsement should be inferred.

The United States Gov•rna.nt has at least a royalty—free , nonezclu—
sive and irrevocable license throughout th. world for Government purposes
to publish, translate , reproduce , deliver , perform, dispose of, and to
authorise others so to do, all or any portion of this work.

The research was partially sponsored by National Science Foundation
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in recent years and some of these analyses are responsive to institutional

details.

Here we compare the literature on dynamic models of oligopoly with

our construal of the objectives of oligopoly theory. We use discrete

time sequential games, sometimes called “stochastic games,” as a canonical

form in which to discuss the issues. The stochastic game model encom-

passes many interesting oligopoly models and it seems to offer an appro-

priate level of generality to address research needs. Incidentally, we

do not believe that there is any importance to economic theory associated

with the distinction here between continuous and discrete time models,

i.e., between stochastic games and differential games. In principle,

the discussion could be couched in terms of continuous time models instead

of stochastic games.

We believe that the primary objective of oligopoly theory is to provide

an understanding of pricing and resource allocation over time in large

firms and the consequent market behavior of such firms. We begin by

enumerating some issues involving dynamics that are inherent in this

goal. We sketch a general stochastic game model and use the model to

address the task of constructing satisfactory dynamic oligopoly models.

This effort in part becomes a specification of research needs and oppor—

tunities in stochastic game theory and oligopoly theory. At this stage

in the development of both subjects, it is useful to identify problems

rather than only describe past accomplishments. Section 5 cites specific

recent results, and Section 6 presents a blending of problems in optimi—

sation and survival.

— — — —~~— .~— —~~~ . - - ~
.-—,.‘—‘ — .-•_~ ~

-- ~~~~~~~~~~~~~ ‘~~~~~
- --—

— ~~~
— —— .-.—

~~
- -I- ~~~~~ — — —~



-~~~~~~~~~~~~ _____

~~~~~— - ~~~~~ ~~~~~~~~~~~~~~~~ 
- -~-—— — - -~~~~-~~~~~~~~—~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .

2. DYNAMICAL ISSUES IN OLIGOPOLY

What are some characteristics of the dynamics of pricing and resource

allocation in large firms and their consequent market behavior? Here,

we mention three kinds of problems. Firstly, there are the dynamics of

the composition of the set of firms in the market. This “entry and exit”

problem in oligopoly is the subject of current research but most analyses

have either been static or ignored the multiplicity of “players” in such

gemes . A closely related problem is how to distinguish “competition among

the few” from “competition among the many .” The modeling issue is how

large must a market become in order for game—like individual behavior

to become unimportant. Secondly, in a given oligopolistic market , why

do prices fluctuate as they do? In most markets, the prices fluctuate

more slowly than the prices of the factors comprising the inputs in the

production process. This phenomenon of “sticky prices” is widely recog—

nized but has hardly been analyzed in a dynamic oligopoly model . Lastly,

in some oligopolistic markets, there is one firm that acts as a leader

in changing the price level. Why ? Why is there price leadership behavior

- in some markets but not in others? Why might a firm act passively as

a follower under some conditions but bolt the pack under other conditions?

Another collection of dynamical issues concerns the role of infor-

mation in market behavior. How do firms tacitly communicate their objec-

tives, strategies, and threats to one another? How do divisions of a

large firm co~~anicate with one another so that their decentralized actions

T are mutually supportive of the overall goals of the firm. This is the

general problem of managerial control. Furthermore, how do accounting

conventions affect firm and market behavior? Technically, this question

can be posed in terms of alternative aggregations of information. Lastly,

— - —— —— — —— ___________________ - - -  ~~~~~~~~~~~~~ - — - - —- 
_ ___ _4_



—

4

what are tae effects of imperfections in information, particularly those

due to delays in transmission of informat ion? Little progress has been

made on a general treatment of this last issue and the prior one has

been analyzed in some detail only in static models (Team Theory).

What are the effects of market size? Most facets of this issue

are not particularly dynamical in nature but we should know how to analyze

them in dynamic models. As one example, what is the effect on product

quality of the number and size of firms that are competing? An issue

that is primarily dynamical is the dependence of the number of firms in

the market upon the time rate at which information spreads, and vice

versa .

Preference structures have been treated somewhat incidentally in

oligopoly theory. Important research on intertesporal preference order—

ings is currently occurring (Kreps & Porteus, forthcoming) for models of individual

decision making over time. Comparable investigations of dynamic multi—

person decision models have not yet begun. The situation becomes even

more complicated if we construct “behavioral models of the firm” (Cyert & March,

1963, Williamson, 1975) which discard the notion of a single monolithic

“decision maker” making all the decisions in each firm. The models in

“Team Theory, ” for example, can be construed as noncooperative games

amongst players having the same preference ordering over outcomes but

differing in the information and the actions available to each. We have

yet to see an investigation of sequential models of this kind. Lastly,

the dynamic oligopoly models analyzed thus far are predicated on a scalar

objective such as each f irm’s discounted operating profit. However1

various economists argue that managers in firms behave as if they were

maximizing vector objectives Components other than profit might include

_ _ _ _  _ _  ~~~~~~~ 
—
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rate of growth in sales , number of employees, share of the marke t and

survival. An important first step has been taken in the analysis of

sequential games with vector payoffs (Henig, 1978) but this general

theory has yet to be applied to a dynamic oligopoly model.

We now turn to come issues of constructing satisfactory dynamic

oligopoly models. The canonical form of a general stochastic game viii.

be useful for that purpose. The next section br iefly defines a stochas-

tic game and enumerates some notions of the “solution” of such a model.

3. STOCHASTIC GAMES

Let I be a set of players , S a set of states , and A~ a set

of actions available to player i £ I when the process is in state a c S

These sets are assumed to be nonempty. The composite action of all the

players , when the process is in state s , must be an element of

C — X A ~ . We write a~~ (a
i) t C  . An outcome of a stochastic5 id 5

game is $ sequence 
~l’ 

a1, 
~2’ 

a2, ... where at c C5 for all t

Let W — ((s,a) : a £ C5, s £ S) .

The dynamics are determined by the decision rules used by the players

to choose their actions and by a collection tq(’~s, a) : (s,a) £ WI
of probability measures on , the Borel subsets of S . For any

period t and H e R 5 , if se — s  and a
~~

.a  then q( Hjs , a) is

the probability that 
~~~ ~

A two—per son zero—sum matrix game is a special case of a s tochastic

game where S is a singleton. It is easy to see that in such a game,

in general, one may wish to admit random ized strategies This complicat es

the measurability and integrability issues which are already ilbedded

in the one person stochastic game, namely the Ma rkov decisio n process.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~-
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Our exposition suppresses these issues which are the subject of some

current research on stochastic game.. The interested reader should read

th. fine survey by Parthasarathy and Stern (1977) and the neat recent

paper by Whitt (1977).

With the preceding caveat, let ii ~ denote the set of player i’ s

nonanticipative decision rules (including rules that are history dependent

and randomized) for choosing a~ , for each t , on the basis of the

outcome to date, namely s
~
, a1, ... , 5tl’ at_i, 5~ . The stationar y

policies are particularly interesting decision rules. Let be the

set of probability measures on the Borel subsets of A~ . An element of

can be used to choose a randomized action when the game is in state

a . Let (~i — X D~ , A — )( A~ , and it — . An element of
scS id id

it is a policy. A policy y c it is stationary if there exists 6 c A

such that y — (6, 6, 6, ... ) so a
~ 

— for all t . We write

y — 6 in this case. Let A~
D denote the subset of stationary policies

in it . Finall y, it is convenient to represent any y £ it as (y
t , 1

_i)

where y~
t e f l i ti

j#i

There has been some research on the ergodic properties of 
~~~~~~~~~ 

a
~
)}

induced by stationary policies (cf. Sanghvi & Sobel, 1976, Sanghvi, 1978)

but most literature concerns real—valued payoff functions. Let rt (s,a)

denot. the (expected) imeediate reward to player i in any period t

if the state a~ is * and the composite action at is a £ C5

Let be player i’s single period discount factor and let

__________________________ - - _ _ _ _ _ _ _
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yt(y15) . }
~ B~~~r~ (s ~ )

t—l i t t

(1)

-

~ yi(y 15) — EV1(yjs)

denote the total discounted payoff and its expectation when y £ it is

the policy and • s is the initial state . Some literature concerns

the average payoff per period rather than the discounted payoff but the

latter is more appropriate for oligopoly and other open (or partial equi-

librium) economic models.

• A policy y c it is said to be an equilibrium point relative to

H C S  iff

(2) v1
(y~s) sup{v~(p, y~i) : p c ii ~~) , S £ H , i e I

We say simply that y is an equilibrium point if it is an equilibrium

point relative to S . An equilibrium point relative to H is non—

collusively optimal for every initial state in H and every player.

Shipley (1953) , in a magnificent early paper, established existence of

an equilibrium point amongst stationary policies in a two—player model

with UA ~ a finite set for each player and r1(.,’) + r2(’,~) C •
seS

)~re general existence results concern nonzero sum games played by more

than two players (Rogers, 1969, Sobel, 1971, Parthasarathy & Stern, 1977,

Whitt, 1977). Also,Henig (1978) has recently established existence of

an equilibrium point for games where r~ (’ ,•) is vector—valued .

_ _ _ _ _ _ _  • - . • :~~~~~~~~ ‘ - ~~~~~~~~~~~~~ 
- -- - _ _ _ _ _ _ _ _
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We have observed that th. extent theory fails to explain why price

leadership occurs and which firms are likely to be followers while others

are leaders. Ibre general ly, there is no satisfactory sequential analogue

to “ coo perative ” theory for static games . The primitive element in most

of the coo perative static theory is the coalition, namely a subset of

the players who join together for mutual benefit. However, a satisfac tory

dymamic theory must admit changes in coalition composition as time passes

• but the present theory does not include this feature .

Another modeling issue stems f rom the embarrassment of riches provided

by the size of the s•t of equilibrium points. It is known that the size

of this set increase s as information conditions in a game proliferate

(cf Dubey and Shubik, 1979) . Therefore , oligopoly models that strive to

include the design of information systems and managerial control may induce

distressingly many equilibrium points. The problem is to decide which

one, more generally which subset , is the appropriate object for analysis .

We believe that the so lution to this problem should vary depending upon

the context which motivates the model. In other word s , behavioral con-

siderations and institutional details should direct our definition of

“the appropriate object for analysis.”

It has already been mentioned that no satisfactory canonical model

exists to analyze the effects of imperfections in information due to

delays in transmission. Indeed , the intricacy of the analysis in a re-

latively simple case analysed by Scarf and Shapley (1957) is alarmi ng.

We doubt that a layesian approach is appropriate here although one of us

has explored this elsewhere (Sanghvi and Sobel, 1976) , The extant theory

of stochastic games would oblige us to assume that each firm knows the

prior distribution hold by every other firm.

~L ~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~



Careful modeling of many industries leads to the explicit inclusion

of bankruptcy conditions in a model. Such conditions exemplify “exit

fees” in the class of Msrkov decision processes called stopping problems.

There are several interesting qualitativ e results concerning the structure

of optimal policies in stopping problems. As yet , there is no comparable

theory for “stopped sequential games.” The payoff to oligopoly theory

from developing such a theory might include a deeper understanding of

the effects of alternative bankruptcy laws and the dynamics associated

with the entry and exit of firma from an industry. One of us has sug—

gested a class of “Gaaes of Economic Survival” to pick up the ruin poe—

sibilities (cf. Section 6, Shubik, 1958, Shubik & Thompson, 1959) .

This list of modeling issues is necessarily brief and we have not

discussed some pertinent material. Aumann (1959) has developed results

for “supergames ” A aupergame is a sequence of static games in which the

nature of the static games is not contingent on players’ past actions. The

case of the same static game at each point (in the sequence) has been

investigated more than any other. This case is a stochastic game with

(s j — 1. Friedman (1977) analyzes this case in oligopoly models, He focuses

on “reaction function” strategies; each player’s present decision is

contingent on the opponent’s preceding decision. Such decision rules

induce a stochastic game in which S is the set of players’ possible single

game decisions. Recently, Rosenthal (forthcoming) has investigated sequences

of games with varying opponents. His point of view may be useful for

construction of dynamic models of entry and exit in oligopoly. Shefrin

(1978) has interesting results for dynamic market games with incomplete

information,

• ~~~~~~~~~~~~~~~~~ . —  .- •
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5. SPECiFIC RESULTS

Stoc hast ic game models of oligopoly, even with the limitations enum-

erated above , are forbiddi ngly complex. Neverthe less , some progress

has been mad. either by reduc ing the potential complexity or by building

a model for a particular kind of industry and then posing correspondingly

special questions. F~~~tly, we discuss the reduc t ion of complexity.

Stochastic game models are difficult to analyze because the number

of players is greater than one, so the players interact with one another

and because the game process extends over time and each player indulges

in a variety of intertemporal tradeoffs. Several writers (Lippman ,

1977 and its references) have suppressed the complexity due to the inter—

action of firma by analyzing models of leader—follower behavior where

the identities of the leader and followers are known at the outset.

The problem is then the selection of an optimal dynamic policy by the

leader and this latter problem is a (one person) Markov decision process 9
which is much less complex than a stochastic game.

Another suppression of complexity has been obtained by preserving

a multiplicity of players (firms) but reducing the original dynamic game

to a static game. Specifically, an equilibrium point of a stochastic

game is said to be myopic if it consists of the ad infinitum repetition

of an equilibrium point of a static game. The principal sufficient con-

ditions (Sobsl, 1978), satisfied by various dynamic oligopoly models,

are :

• (3a) for each i c I and (s,a) c V , rt(s,a) depends

additively on the state s and action a , i.e.,

there are functions and L1 such that

ri(s,a) . )c
i
(a) + L1(s)
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(3b) transition probabilities depend on the actions taken

but not on the state from whi.~h transition occurs, i.e.,

• q( H~a , a) — p(HIa) for all H £ and (s,a) £ V ;

(3c) suppose the static game r , defined below, has an

equilibrium point a
~ in pure strategies and let

— Is : i £ S, a* £ C8) . Then p (HIa*) — 1 for

all H £ B
5 

having S* C H  , i.e. if s
~ 

c S~ then

a* is repeatable ad infinitum (with probability one) .

Let ~(a) be a random variable with the measure p(.Ia) in (3b). Then I

is the set of players in the static Nash game 1’, player i’s payoff

function is K~(a) + B~E(L 1(~(a))]~ a C U
ic:I

and player i has available the set of moves A~ — U A5 . If
8ES

is randomized then there is an assumption comparable to (3c). It follows

from (3) that at a5 for all t is an equilibrium point u n  the sto-

chastic game sense of (2)] relative to S~
Numerous Markov decision processes in the literature satisfy (3)

but the myopia of their optimal policies was either overlooked or deduced

by special and sometimes intricate arguments. Also, various oligopoly

models satisfy (3). Kirman and Sobel (1974) assume that firms make produc-

tion and pricing decisions each period and they have linear production costs

and arbitrary single—period inventory—related cost8. The oligopoly model in

Sobel (1977) focuses on advertising decisions. It is assumed there that each

f irm ’s demand each period is a random variable whose distribution depends

on all firms’ “goodwill.” The goodwill is an exponentially weighted

• moving average of past amounts spent on advertising. Myopia has been

applied to other oligopoly models where the competition involves expen—

— 
I 

—
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ditures on research and development , expansion of capacity, and the

harvesting of interacting fish species in a coastal fishing industry.

6. GAMES OF ECONOMIC OR SOCIAL SURVIVAL

The goals of profit maximization or cost minimization are present

in many economic ‘~‘odels. Games of survival, as characterized by Shapley

(1953) , stress the binary outcomes of survival or not. Yet in many social,

ecological and economic processes the goals include both survival and

optimization of the quality of life for the survivor .

Below we describe a general class of games of social or economic

survival. With notational changes, they can be recast as stochastic

games.

An n person game of economic survival is described as follows by:

• a~(t) ; W~ ; B~ ; S~ ; L~ ; ; and

where:

~
i(t) , i — 1, ... , n are the single period payoffs faced by the

players at time t . They depend on actions described below and will

in general depend upon time.

i — 1, ... , n and t — 1, 2, ... are the vealths of the

players at the start of time t . Initial assets W~ and W~ are given

as parameters.

are the ruin conditions, bankruptcy levels or “absorbing barriers”
for the player; i.e., if the assets (or strength or viability) of a player

i drop to below B~ , that individual is out of the game.

• S1 are the survival values; i.e., if individual i is the sole

survivor in the game, S~ is the present value of the remaining one

person game.

_ _ _  
_ _ _  

L
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are the liquidation values. If an individual i is ruined,

he may still have residual assets at the point of ruin. The value of

these assets is given by

are discount factors. We assume that each individual has a

discount factor on future consumption. The could be dependent upon

the age of the individual, thus reflecting life cycle considerations.

T is the time at which bankruptcy (if any) occurs:

T — infft : (W~, W~) ~t (B
1, B2)} •

V1 is the payoff function to player i • It cannot be fully spe-

cified until the strategies and the relationship among income, consumption,

and survival are specified.

Two versions are given, the game where pure survival is the goal

and the game where the maximization of expected discounted consumption

(or utility ,1(.) of consumption) is optimized.

At the start of any time t an individual 1 has W~ . A Markov

strategy by an individual i is a plan for the selection of an invest—

ment amount x~ and a consumption amount b~ dependent upon W~
— (W~, •.., W’) .

i i i l  n i i
— 
~t

(Wt +u (xt, •*
~~~~ 

x
~
) — b t _ x t ]

where 0 < x~ + b~ < W~ and ~~ ~~~ 
... are independent and identically

distributed random variables.

Pure Survival

V~ • 1 if W~ > B~ for t — 1, 2, ... ,

— 0 otherwise. • •

-
~~~~~~~~~~~~~~~~~~~~~~~~; 
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Pure Consumption Optimization

i i
t_l

i ~ 
Vi > B l , t — l , ... ,~~~~~

V — Z ( ’ ) ,(b
~
)

t l  and game continues indefinitely.

T t—l 1 T 
~ 

W~ > B~ , t — 1, .. ., T
— ~

(
~~

) ,(b
~
) + (

~~
)S , 

t
• t 0  and game continues until T.

T 1 t—l 
~ i i T i W~~> B

1 
, t l , ... , T—l

— ~
(
~~

) •(b~
) + (

~~
)L 

i kt—l VT < B and game ~continues

until T—l.

For either criterion, let I indicate which player (if either)

is ruined:

0 if T~~~I —
• ,J if r 4 < Bi .

Then, for either criterion, consider the vector (V 1, V 2, T, I) . The

adoption of a policy by the players induces a (joint) probability dis—

• tribution of this vector and we may compare the distributions induced

by alternative policies. An obvious comparison is according to

• yi — E(V1) . For example, in the pure survival criterion,

— p{yi — l} — PU i~ i} . Although we shall not pursue the matter

her., the two criteria can be treated in a unified manner by first de-

fining an appropriate stochastic game.

6.].. A “Guns or Butter” Example

A two player exampl. illustrates the tr*deu~f between consumption

and survival. Let b
~ 

and x~ denote player l’s consumption and investment

.
~ ~~~~~ 

I
• ‘ ..‘~~~~~ ~~~~~~~~~~~~~~~

.J~~. ~~~~~~~~~~~~~~~~~~~~~~~~ ..~~~~~. ~.-—-— —
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in period t and let dt and denote the same amounts for player 2.

Let

• if x~ + 
~
‘t 

> 0

— 0  if x~~— y ~~— O

_ •1
— Ax : y if x~ + 

~
‘t > 0

0 if ~~~~~~~~~~~

Let W~~— M ;  W~~” M ;  B1— B 2 — L 1 — L 2 — 0 , s1 — s 2 — A/(l—’v)
— c ; ‘V~ — ,~,2 

— ~Y where 0 < ‘I’ c 1 . Say b~ — bt and b~ — dt
• If the goals are pure survival then x~ — 

~~~ 
b
~ 

— dt — 0 gives

Mt+l — 
~t
M
~ 

> 0 , m
~÷i 

— 
~~~ 

> 0 where > 0 is a random variable.

If the goals are maximization of expected consumption then if a

solution with joint survival is feasible, player 1 wishes to

t-1
max E ~ (,i) b

~ , 
bt > 0 , x~ .~ 0

~~~~ t—l

subject to 0 < bt, 0 <

bt + x~ .~~ 
M
~

• and

Mt+l — b
~ + A[~~ .~~~) 

-

and player 2 wishes to
t-I.

maxEZ (,i) d
~

~~~~ 
t—l

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



mt.~.l — i
t[m~ 

— d
~ 

+ A[r~~y )  
—

Let ~* — ER
~
]. If ‘Viz < 1 and P{~ > ‘Vii/2} — 1 (for which P{~ > 1/2) —

• 1 is sufficient) then we can show that there is a myopic equilibrium point

with respect to {(M1,m1); (M1,m1) > ‘V~A/4(l ,l)} given by

— y
~ 

— iiA’V/4, for t — 1, 2,

bt — dt — A (2
~t_ 1 — ‘fli)/4, for t • 2, 3,

b1 — M1 - pA’V/4, d1 • m1 - iza’V/ 4

and expected payoffs are :

1 t lv — M.1 
— Aj.fY/4 + Z ‘V 

— 

(2C
~~i 

—

t—2

— M1 + Aiz’V/[4(1—’V)]

v2 
- m1 + A~’V/[4(1—’V)],

If P{~1 < I’ii/2} > 0, or (M1,m1) 
~ ‘V iiA/4(l,l), or ‘Vii > 1 then the analysis

and solution become complicated.

The “net earnings” or gains from competition are given by the terms 4

x
~A + 

- x~

These portray the resource strugg le or the “battle conditions .” The

payoffs involve only the b
~ 
, i.e., the resources drawn of f for con—

eumption .

1k 1T ~~~~~~ --~~~~~ 
—
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